Fundamental Algorithms 7

Exercise 1 (Hash Function)

Let $n=1000$. Compute the values of the hash function $h(k)=\lfloor n(a k-\lfloor a k\rfloor)\rfloor$ for the keys $k \in$ $\{61,62,63,64,65\}$, using $a=\frac{\sqrt{5}-1}{2}$. What do you observe?

Exercise 2 (Hash Table)

Let T by a hash-table of size 9 with the hash function $h: U \rightarrow\{0,1, \ldots, 8\}, k \mapsto k \bmod 9$. Write down the entries of T after the keys $5,28,19,15,20,33,12,17$, and 10 have been inserted. Use chaining to resolve collisions.

Exercise 3 (Open Hash)

Now, let T be a hash table of size 11, using open addressing with the following hash functions

1. $h(k, i):=(k+i) \bmod 11$
2. $h(k, i):=\left(k \bmod 11+2 i+i^{2}\right) \bmod 11$
3. $h(k, i):=(k \bmod 11+i \cdot(k \bmod 7)) \bmod 11$

Insert the keys $5,19,27,15,30,34,26,12$, and 21 (in that order) and state which keys require the longest probe sequence in the resulting tables.

Exercise 4 (Hashing the Universe)

Consider a universe U of keys, where $|U|>m n$, and a hash function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Show that there are at least m elements of U which are mapped to the same hash value, i.e. there is a subset A of U with $|A|=m$ and $h\left(a_{1}\right)=h\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$.

